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Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore

Sandip Ghosal
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
(Received 31 May 2007; revised manuscript received 23 August 2007; published 26 December 2007)

Recent work has shown that the resistive force arising from viscous effects within the pore region could
explain observed translocation times in certain experiments involving voltage-driven translocations of DNA
through nanopores [Ghosal, Phys. Rev. E 71, 051904 (2006); Phys. Rev. Lett. 98, 238104 (2007)]. The
electrokinetic flow inside the pore and the accompanying viscous effects also play a crucial role in the
interpretation of experiments where the DNA is immobilized inside a nanopore [Keyser et al., Nat. Phys. 2,
473 (2006)]. In this paper the viscous force is explicitly calculated for a nanopore of cylindrical geometry. It
is found that the reductions of the tether force due to viscous drag and due to charge reduction by Manning
condensation are of similar size. The result is of importance in the interpretation of experimental data on

tethered DNA.
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The interaction of charged polymers such as DNA with
nanometer-sized natural and artificial pores has received con-
siderable attention recently [1-7]. Such studies are partly
motivated by the desire to understand how polymers cross
internal membranes of cells [8]. The possibility of develop-
ing devices capable of detecting properties of biopolymers at
the single-molecule level for applications such as rapid DNA
sequencing [9] is also a motivating factor for such studies.

In a recent paper [10] Keyser et al. reported experimental
measurements in which a single molecule of double-stranded
DNA was immobilized while threaded inside a nanopore by
the application of a pulling force to counteract the electrical
force on the DNA. This was achieved by attaching one end
of the DNA strand to a Streptavidin-coated polystyrene bead
and holding the bead in a laser optical trap. The displacement
of the bead from its equilibrium position could be detected
and used to measure the pulling force on the DNA. The
measured value was found to be about 75% of the maximum
electric force on the DNA within the pore based on its bare
charge, irrespective of the electrolyte (KCI) concentration.
This pulling force is, however, determined by a complex
interplay between electric forces and hydrodynamics, as
noted by Keyser et al. [10]. The point of this calculation on
an idealized physical model is to understand the relative im-
portance of hydrodynamics and the reduction of effective
charge on the DNA due to Manning condensation in deter-
mining the observed pulling force. Since the DNA as well as
the internal walls of the pore are charged, the pore region has
a cylindrically symmetric distribution of oppositely charged
counterions. In the presence of a strong electric field an
electro-osmotic flow [11] is therefore generated in this region
that flows in a direction opposite to the direction in which the
DNA would move if it were not immobilized (Fig. 1). This
flow produces a hydrodynamic drag on the DNA, partially
balancing the applied electrical force. In this paper, a simpli-
fied geometry of the pore region is used to calculate the
viscous drag explicitly. It is shown that the drag is a signifi-
cant fraction of the total force acting on the DNA and needs
to be taken into account for a proper interpretation of experi-
mental data on DNA-nanopore interactions.
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A simplified model is adopted in which the nanopore is
regarded as a cylinder of radius R (5.0 nm) and length L
(60 nm). The part of the DNA inside the nanopore is re-
garded as a uniformly charged cylinder of radius a (1.1 nm)
along the axis of the pore. The DNA has a linear charge
density \ (two electron charges every 0.34 nm—the distance
between adjacent bases) and a lower “effective” charge den-
sity of N\,=\/qp due to the Oosawa-Manning [12,13] phe-
nomenon of counterion condensation on its surface. The fac-
tor gp is the Oosawa-Manning factor; it has the value of g
=4.2 for an ideal model of an infinite line charge in an un-
bounded electrolyte. Referring to the system sketched in Fig.
1, the fluid velocity in the pore is axially directed and is
described by some function u(r) where r is the distance from
the central axis. The electric potential is —Eyz+ ¢(r), where
the first term is due to the externally applied axial electric
field E, along the pore (the z direction). The functions u and
¢ are governed by the Stokes equation for viscous flow (with
zero pressure gradient and an electric body force term) and
the Poisson equation of electrostatics, respectively.
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FIG. 1. Sketch illustrating the tethered nanopore experiment
with a cylindrical pore.
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where € is the permittivity of the electrolyte and p, is the
electric charge density due to ions. The classical boundary
conditions of no slip are assumed for the velocity:

u(a) =u(R)=0. (3)

Eliminating p, from the pair of equations (1) and (2) and
using (3) determines u(r) in terms of the potential ¢(r):

In(r/R) )
In(a/R) /)’

u(r) = %(dﬁ(r) _ $(R)+ A (4)

where A@=@(R)— ¢(a). The viscous force (along the z axis)
on the DNA is then
A
). (5)

F,=2maluu'(a) = 27T“EE0L(¢,(‘1) * an(a/R)

If S is the surface charge density on the channel wall, then by
Gauss’s law,

—2maed’(a) = \,, (6)

€p'(R)=S. (7)

Using the first of these equations to eliminate ¢'(a) and
noting that the electrical force on the DNA is F,=\,LE,, Eq.
(5) may be written as

F, F,+F, 2meAd
F, F, \/n(@R)’

e (4

(8)

where F,=—F,—F, is the tether force.

In order to calculate the ratio F,/F, from Eq. (8), all that
remains to be done is to calculate the quantity A¢. If the
potential ¢ anywhere in the gap does not greatly exceed
kgT/e (about 30 mV at room temperature; kg is the Boltz-
mann factor, T the absolute temperature, and e the magnitude
of the electric charge) then ¢ may be computed from the
Debye-Hiickel model (N, is the Debye length):

1d{ dp\ ¢
Lofa8) o
rdr\ dr \p
with the boundary conditions (6) and (7). The solution to that
problem is
N r r
== AL| — | + BK,| — | |, 10
¢(r) 2776{ 0<?\D> O(kn)} (10)

where the constants A and B may be compactly expressed in
terms of the dimensionless variables ax=a/\p, R«=R/\p,
and Sx=(2maS)/\,. Thus,

3 S«K(ax) + K,(Rx)
 as[1}(R¥)K, (ax) = I (ax)K,(R%)]’

(11)
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FIG. 2. Ratio of viscous to electric force on DNA (-F,/F,)
plotted as a function of KCI concentration assuming a charge of two
electrons per base pair on the DNA (Manning factor of unity) and a
constant surface charge on the pore wall parametrized by the sur-
face charge density S (in mC/m?).

B Ssl(ax) + I,(Rx)
" as[1,(R9)K,(ax) - I,(ax)K,(R%)]’

(12)

where K, and I, (n is a non-negative integer) are modified
Bessel functions of integral order. The potential drop A¢ in
Eq. (8) is now easily found from Eq. (10):

Ae
2me

AQZ’): (AAI()+BAKO),
where Al =Iy(R+)—Iy(ax) and AKy=Ky(R*)—Ky(ax).

The result of the calculation as described above is shown
in Fig. 2. The figure shows the magnitude of the viscous to
the electric force (—F,/F,) evaluated from Eq. (8) using the
value of N\p appropriate for a symmetric binary electrolyte
[11]. The effective charge of the DNA is assumed to be the
same as the bare charge (\,=\) of —2e¢ per base pair and the
applied voltage is AV=-120 mV. The surface charge con-
centration on the substrate S has been assumed independent
of the KCI concentration. From measurements of conduc-
tance and streaming potentials, it has been shown [14,15]
that in Si/SiO, nanopores S=~-60 mC/m? for KCI concen-
trations greater than about 0.1M. However, for low concen-
trations, the surface charge density drops substantially and
needs to be calculated from a more elaborate model that
takes into account the equilibrium of surface reactions at the
interface. For very low concentrations, S=~-4 mC/ mZ. Due
to the approximate nature of our model it does not seem
worthwhile to attempt to incorporate the proper dependence
of S on KCI concentration. Instead, it suffices to show how
—F,/F, varies with salt concentration for several fixed values
of S between —4 and —60 mC/m? as shown in Fig. 2. The
important feature that these curves illustrate is that —F,/F, is
essentially constant for most of the KCl concentration range
at a value of around 0.7-0.8. Thus, the viscous force is not
small, and, furthermore, if the viscous force were neglected
and the reduction in the electrical pulling force were attrib-
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uted to counterion condensation, it would appear that the
DNA effective charge is lowered by about 75% (just the right
amount to lead one to conclude that charge reduction by the
Manning factor of gz=4.2 is being validated). Figure 2
shows an increase in the hydrodynamic drag with increase in
the magnitude of S, because the surface charge on the pore
walls enhance the electro-osmotic flow due to the DNA
charge. A model that properly accounts for the variation of S
with KCl concentration is expected to follow the S
=—4 mC/m? curve closely for low concentrations (below
about 0.1M) and asymptote to the S=—60 mC/m? curve at
high concentrations. The distribution of counterions in the
calculations presented here was treated by means of the equi-
librium Debye-Hiickel theory and one may question whether
that corresponds to the experimental conditions. Taking the
ratio —F,/F,=~0.75, Eq. (8) gives A¢p=80 mV if for A, one
assumes the DNA bare charge of two electronic charges per
base pair. If this is reduced by the Manning factor of g
=4.2, then A¢=19 mV. Though the formal requirement for
the Debye-Hiickel linearization is |¢| <kzT/e~33 mV, in
practice the double-layer structure calculated from the
Debye-Hiickel theory does not deviate substantially from the
more accurate Poisson-Boltzmann calculation as long as the
maximum value of |¢| is not substantially larger than
2kpT/e~66 mV [16]. Therefore the Debye-Hiickel theory
certainly suffices for our present purpose. For the cylindrical
geometry considered here, the applied potential does not dis-
turb the equilibrium Debye layer structure, since the applied
field is always along the isoconcentration surfaces of the
ions. However, for the real nanopore, the applied electric
field may have a radial component, and one may ask if this is
strong enough to distort the equilibrium Debye layer. Since
|[AV|=120 mV and L=60 nm, this imposed field is E,,,
=|AV|/L=2x10° V/m. The radial field within the Debye
layer may be estimated as E;,,=|A¢|/(R—a)=5>X10° V/m
with Manning condensation and E;,,~20X 10° V/m with

PHYSICAL REVIEW E 76, 061916 (2007)

the DNA bare charge. Thus, though the distortion of the
double layer can be neglected for the purpose of obtaining a
rough estimate, it should be accounted for if one desires an
accurate calculation of the viscous force. In order to do so,
the cross-sectional shape of the nanopore must be known.

Analysis of this simplified model suggests that a more
careful modeling is needed in order to properly interpret the
Keyser et al. experiments [10]. Such a model should account
for hydrodynamic drag while taking into account the proper
pore shape, the variation of substrate charge with KCl, pos-
sible departures of the equilibrium potential from the Debye-
Hiickel model, and other relevant conditions of the experi-
mental set up. Numerical simulation on a more elaborate
model incorporating these details used in conjunction with
the experimental data could provide a more complete picture
of the effective charge on DNA inside a nanopore. One may
be tempted to question the use of classical continuum hydro-
dynamics for flows on the nanometer scale. However, the
classical approach has already been shown to give results in
reasonable agreement with experiments on DNA transloca-
tion through solid state nanopores [7,17]. Molecular dynamic
simulations, such as those presented by Aksimentiev et al.
[18], could be used to further refine these calculations and to
show that the effects described here persist even if con-
tinuum hydrodynamics is replaced by a discrete molecular
model. In situations where the length of the DNA polymer is
much greater than the length of the nanopore, entropic forces
due to random coiling of the polymer become significant.
Such entropic effects have been considered by Muthukumar
[19-21]. In the limit R>a, the hydrodynamic friction with
the pore walls becomes unimportant and the problem be-
comes one of determining the electric field that would im-
mobilize a polyelectrolyte acted upon by given nonelectrical
forces in the presence of Brownian fluctuations. This prob-
lem has been studied in its general form by Long et al
[22,23].
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